hitzindec	USER GUIDE	
	HITZINGER UPS SYSTEMS	07506.000

2 NBDD Diesel UPS System with Flywheel

2.1 Schematic Diagram NBDD System

Picture 1: Schematic Diagram NBDD System

2.2 Mechanical Assembly of the NBDD Machine Set

2.3.5 Dimension and Weight of NBDD Systems

Rating [kVA]	Length (L) [mm]	Width (W) [mm]	Height (H) [mm]	Width incl. Flywheel [mm]	Weight [kg]
100	3750	800	1714	1300	3700
150	3750	880	1750	1500	4700
250	4550	980	1850	1600	5500
325	4500	1100	2000	1700	6200
425	5000	1300	2100	1800	6500

Table 2: NBDD Dimensions and Weight up to 425 kVA

Picture 4: GA - NBDD up to 425 kVA

Rating [kVA]	Length (L1) [mm]	Length (L) [mm]	Width (W) [mm]	Height (H) [mm]	Width incl. Flywheel [mm]	Weight [kg]
550	6000	5200	1300	2200		7000
700	6300	5400	1500	2400		10000
850	6800	5800	1772	1900		11000
1000	7100	6100	1772	2300		14800

Table 3: NBDD dimensions and weights from 550 to 1000 kVA

Picture 5: GA - NBDD from 550 to 1000 kVA

hitzinger

USER GUIDE HITZINGER UPS SYSTEMS

2.4 NBDK Diesel UPS System with KIN Module

2.4.1 Single Line Diagram NBDK System

Picture 6 NBDK Single Line Diagram

2.4.2 Mechanical Assembly of the NBDD Machine Set

Picture 7 Mechanical design NBDK 1500kVA with MTU 12V4000 diesel engine

hitzinger

2.4.8 Dimensions and Weights of NBDK Systems

Rating [kVA]	Length (L) [mm]	Width (W) [mm]	Height (H) [mm]	Weight [kg]
150	5300	1010	1690	6100
250	5500	1010	1690	7600
350	5800	1200	1780	8500
500	6100	1200	1890	12900

Table 4: Dimensions and weights NBDK up to 475 kVA

Picture 11: GA - NBDK up to 500 kVA

Rating [kVA]	Length (L1) [mm]	Length (L) [mm]	Width (W) [mm]	Height (H) [mm]	Height (H1) [mm]	Weight [kg]
625	8550	7200	1500	2400	2700	16500
800	9120	7550	1772	2400	2700	18500
900	9120	7550	1772	2600	2700	22000
1225	9120	7550	1722	26000	2700	22000
1500	10270	8500	1905	2790	2790	24510
1750	10570	8800	1905	2790	2790	26435
2000	10570	8800	1905	2790	2790	27730

Table 5 Dimensions and weights NBDK from 600 kVA to 2000 kVA

Picture 12: GA - NBDK 600 kVA to 2000 kVA

12 Plant Layout

12.1 Standard-Layout of a UPS Installation

Picture 51: Standard layout of a UPS Installation

12.2 Problems of Installations in Existing Buildings

Certain criterions have to be considered if an UPS system is planned to be installed in an existing building. A check of these criterions during tender stage is mandatory. In case of any doubts the evaluation of our engineering and R&D department is required.

hitzinger

Example 2: UPS room with a max. sound level 70 dB(A) in 1m

Alternative 2 : Cable installation in cable ducts or tranches

UPS - Rat	ing	L	В	Н	Т	ZL	AL	Fuel tank	Sound pressure level in 10 m				
475 kVA		1100	560	320	150 / 220	2,0 m ²	2,0 m²	1100 lit					
600 kVA Cu	Cummins	1290	600	340	180 / 240	4,8 m ²	4,8 m²	1400 lit	with S1 : 70 dB(A)				
	MTU	1230				3,4 m²	3,4 m²						
	Cummins	1510	010 000	010 00			10 000	C10 000	000 / 000	6,0 m²	6,0 m²	0000 /#	with 32 . 50 dB(A)
1000 KVA	MTU	1630	010	360	200 / 280	7,0 m²	7,0 m²	2200 III					

All measures in CM !

Picture 53: Layout UPS room sound level 70 dB(A) in 1m

within false floor

NZNOC

13 UPS Systems in a Sound Insulating Canopy

It is always mandatory to get technical approval of Hitzinger's R&D department before planning / installing a sound insulating canopy.

13.1 Canopy - NBDD

No special requirements for NBDD UPS systems, only the standby losses need to be considered during standby operation.

13.2 Canopy - NBDK

Sound insulating covers need to be easy dismountable, easy accessibly, and with an proper design air flow to guarantee a proper cooling air flow over the KIN module.

Due to the fact that the bearings of the KIN module need to be replaced after latest 5 years it must be guaranteed that KIN module can be deployed from the canopy / room in an easy and quick way. That means that all canopy covers (side walls, roof) in the area of the KIN module must be screwed or fixed with snap closures elements. It is required that the single cover elements can be dismounted by a single person.

13.3 Heat Dissipation KIN078 and KIN085 modules

KIN078 and KIN085 module canopies require fans that have enough pressure reserve to realize metal sheet ducts from the canopy to an external air outlet opening. The air flow needs to flow through the machine (inlet at exciter housing) and overflow the KIN module housing.

Picture 54: schematic air flow NBDK system

Following data are necessary for a proper air flow dimension:

heat dissipated by alternator (standby losses), KIN module, Cooling water heating, switch gear, choke, ...

Calculation:

$$air_quantity = \frac{3600 * P_v[kW]}{\delta t^* c}$$

Pv= total losses in kW δt = allowed temperature rise in the canopy ς = (ro) = air density

Picture 55: Installation of a UPS with air – air radiator

14.2.3 Installation with Water - Water Heat Exchanger

In case of too small air in-/outlet openings it is possible to cool the diesel engine via waterwater heat exchanger. In this installation only the radiated heat of the diesel engine, alternator, and Kin module has to be dissipated by the air flow openings. Room temperatures above $40 \,^{\circ}$ C should be avoided. During diesel operation it must be guaranteed that the max. room temperature is not higher than $30 \,^{\circ}$ C. Otherwise a performance reduction of the diesel engine has to be considered.

Picture 56: Installation UPS diesel engine with water -water heat exchanger

